CRISPR-Cas inhibits plasmid transfer and immunizes bacteria against antibiotic resistance acquisition in manure

Author:

Upreti Chahat,Kumar Pranav,Durso Lisa M.ORCID,Palmer Kelli L.ORCID

Abstract

AbstractThe horizontal transfer of antibiotic resistance genes among bacteria is a pressing global issue. The bacterial defense system CRISPR-Cas acts as a barrier to the spread of antibiotic resistance plasmids, and CRISPR-Cas-based antimicrobials can be effective to selectively deplete antibiotic-resistant bacteria. While significant surveillance efforts monitor the spread of antibiotic-resistant bacteria in the clinical context, a major, often overlooked aspect of the issue is resistance emergence in agriculture. Farm animals are commonly treated with antibiotics, and antibiotic resistance in agriculture is on the rise. Yet, CRISPR-Cas efficacy has not been investigated in this setting. Here, we evaluate the prevalence of CRISPR-Cas in agriculturalEnterococcus faecalisstrains and its anti-plasmid efficacy in an agricultural niche – manure. We show that the prevalence of CRISPR-Cas subtypes is similar between clinical and agriculturalE. faecalisstrains. CRISPR-Cas was found to be an effective barrier against resistance plasmid transfer in manure, with improved effect as time progressed. CRISPR-based antimicrobials to cure resistantE. faecalisof erythromycin resistance was limited by delivery efficiency of the CRISPR antimicrobial in manure. However, immunization of bacteria against resistance gene acquisition in manure was highly effective. Together, our results show thatE. faecalisCRISPR-Cas is prevalent and effective in an agricultural setting, and has the potential to be utilized for depleting antibiotic-resistant populations. Our work has broad implications for tackling antibiotic resistance in the increasingly relevant agricultural setting, in line with a OneHealth approach.ImportanceAntibiotic resistance is a growing global health crisis in human and veterinary medicine. Previous work has shown technologies based on CRISPR-Cas - a bacterial defense system - to be effective in tackling antibiotic resistance. Here we test if CRISPR-Cas is present and effective in agricultural niches, specifically in the ubiquitously present bacterium –Enterococcus faecalis. We show that CRISPR-Cas is prevalent, functional in manure, and has the potential to be used to specifically kill bacteria carrying antibiotic resistance genes. This study demonstrates the utility of CRISPR-Cas based strategies for control of antibiotic resistance in agricultural settings.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3