In vivomulti-site electrophysiology enabled by flexible optrodes towards bi-directional spinal cord interrogation

Author:

Metuh Pietro,Meneghetti Marcello,Berg Rune W.ORCID,Markos Christos

Abstract

AbstractOptical neural interfaces combining optogenetics and electrophysiology have been demonstrated as powerful tools for distinguishing the causal roles of neural circuits in the nervous system. Functional optrodes for multipoint stimulation and recording have already been demonstrated in the brain. However, soft and flexible multimodal optrodes for the purpose of probing the spinal cord have remained undeveloped. Here, we present the design and fabrication of a novel optrode for multi-site optical stimulation and electrical recording in the spinal cord by combining optical fiber drawing of polymer material, laser micromachining, and integration of tungsten microelectrodes in a monolithic fiber-based structure. The results from space-resolved scattering measurements, electrochemical impedance spectroscopy, and an acutein vivoelectrophysiology experiment in an anesthetized rodent suggest this probe as a potential novel interface, which can serve as a part of therapeutic strategies against neurological conditions and injury in the spinal cord.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3