Regularized partial correlation provides reliable functional connectivity estimates while correcting for widespread confounding

Author:

Peterson Kirsten L.ORCID,Sanchez-Romero RubenORCID,Mill Ravi D.ORCID,Cole Michael W.ORCID

Abstract

AbstractFunctional connectivity (FC) has been invaluable for understanding the brain’s communication network, with strong potential for enhanced FC approaches to yield additional insights. Unlike with the fMRI field-standard method of pairwise correlation, theory suggests that partial correlation can estimate FC without confounded and indirect connections. However, partial correlation FC can also display low repeat reliability, impairing the accuracy of individual estimates. We hypothesized that reliability would be increased by adding regularization, which can reduce overfitting to noise in regression-based approaches like partial correlation. We therefore tested several regularized alternatives – graphical lasso, graphical ridge, and principal component regression – against unregularized partial and pairwise correlation, applying them to empirical resting-state fMRI and simulated data. As hypothesized, regularization vastly improved reliability, quantified using between-session similarity and intraclass correlation. This enhanced reliability then granted substantially more accurate individual FC estimates when validated against structural connectivity (empirical data) and ground truth networks (simulations). Graphical lasso showed especially high accuracy among regularized approaches, seemingly by maintaining more valid underlying network structures. We additionally found graphical lasso to be robust to noise levels, data quantity, and subject motion – common fMRI error sources. Lastly, we demonstrated that resting-state graphical lasso FC can effectively predict fMRI task activations and individual differences in behavior, further establishing its reliability, external validity, and ability to characterize task-related functionality. We recommend graphical lasso or similar regularized methods for calculating FC, as they can yield more valid estimates of unconfounded connectivity than field-standard pairwise correlation, while overcoming the poor reliability of unregularized partial correlation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3