Multiple Intermediates in the Detergent-Induced Fusion of Lipid Vesicles

Author:

Dresser L. G.,Kunstmann C.,Conteduca D.,Johnson S.ORCID,Penedo J. C.ORCID,Leake M. C.ORCID,Quinn S. D.ORCID

Abstract

AbstractThe structure, dynamics and function of lipid vesicles are heavily influenced by a range of physical forces, local microenvironmental effects and interactions with perturbative molecules, including detergents. Detergent-induced membrane interactions – critical for a wide range of applications including protein extraction and virus inactivation – varies in magnitude according to the detergent type and membrane composition, but the underlying mechanistic details remain largely under explored. Open questions relate to the precise molecular-level pathway of detergent-induced vesicle fusion, the nature of the fusion products, the influence of modulatory factors, and whether fusion states can be controllably harnessed for bionanotechnology. By using a lipid mixing assay based on Förster resonance energy transfer (FRET), and single-vesicle characterization approaches to assess vesicle heterogeneity, we identify that both freely-diffusing and surface-tethered sub-micron sized vesicles are induced to fuse by the widely-used non-ionic detergent Triton-X 100. We demonstrate that the fusion process is a multi-step mechanism, characterized by discrete values of FRET efficiency between membrane-embedded donor and acceptor fluorophores, and involves vesicle docking, hemi-fusion and full lipid mixing, even at sub-solubilizing detergent concentrations. We present evidence that the fusion process is regulated by environmental factors including membrane composition and phase, and we dissect the kinetics of vesicle fusion in contact with solid surfaces using a label free quartz-crystal microbalance with dissipation monitoring approach. The presented strategies are likely to be applicable beyond the vesicle sizes and compositions studied here, and not only provide mechanistic insight into the multifaceted dynamics of vesicle fusion but also have implications for a wide range of biotechnological applications including drug delivery, sensor development, surfactant sensing, biomimetic formation, and microfluidics, where transport and manipulation of encapsulated cargo is essential.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3