High-resolution imaging of presynaptic ER networks inAtlastinmutants

Author:

Quiñones-Frías Mónica C.,Ocken Dina M.,Rodal AvitalORCID

Abstract

AbstractThe endoplasmic reticulum (ER) is a continuous organelle that extends to the periphery of neurons and regulates many neuronal functions including neurite outgrowth, neurotransmission, and synaptic plasticity. Mutations in proteins that control ER shape are linked to the neurodegenerative disorder Hereditary Spastic Paraplegia (HSP). However, the ultrastructure and dynamics of the neuronal ER have been under-investigated, particularly at presynaptic terminals. Here we developed new super-resolution and live imaging methods inD. melanogasterlarval motor neurons to investigate ER structure at presynaptic terminals from wild-type animals, and in null mutants of the HSP gene Atlastin. Previous studies indicated diffuse localization of an ER lumen marker atAtlastinmutant presynaptic terminals, which was attributed to ER fragmentation. By contrast, we found using an ER membrane marker that the ER inAtlastinmutants formed robust networks. Further, our high-resolution imaging results suggest that overexpression of luminal ER proteins inAtlastinmutants causes their progressive displacement to the cytosol at synapses, perhaps due to proteostatic stress and/or changes in ER membrane integrity. Remarkably, these luminal ER proteins remain correctly localized in cell bodies, axons, and other cell types such as body wall muscles, suggesting that ER tubules at synapses have unique structural and functional characteristics. This displacement phenotype has not been reported in numerous studies of Atlastin in non-neuronal cells, emphasizing the importance of conducting experiments in neurons when investigating the mechanisms leading to upper motor neuron dysfunction in HSP.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3