A Neural Speech Decoding Framework Leveraging Deep Learning and Speech Synthesis

Author:

Chen XupengORCID,Wang Ran,Khalilian-Gourtani Amirhossein,Yu Leyao,Dugan Patricia,Friedman Daniel,Doyle Werner,Devinsky Orrin,Wang Yao,Flinker Adeen

Abstract

AbstractDecoding human speech from neural signals is essential for brain-computer interface (BCI) technologies restoring speech function in populations with neurological deficits. However, it remains a highly challenging task, compounded by the scarce availability of neural signals with corresponding speech, data complexity, and high dimensionality, and the limited publicly available source code. Here, we present a novel deep learning-based neural speech decoding framework that includes an ECoG Decoder that translates electrocorticographic (ECoG) signals from the cortex into interpretable speech parameters and a novel differentiable Speech Synthesizer that maps speech parameters to spectrograms. We develop a companion audio-to-audio auto-encoder consisting of a Speech Encoder and the same Speech Synthesizer to generate reference speech parameters to facilitate the ECoG Decoder training. This framework generates natural-sounding speech and is highly reproducible across a cohort of 48 participants. Among three neural network architectures for the ECoG Decoder, the 3D ResNet model has the best decoding performance (PCC=0.804) in predicting the original speech spectrogram, closely followed by the SWIN model (PCC=0.796). Our experimental results show that our models can decode speech with high correlation even when limited to only causal operations, which is necessary for adoption by real-time neural prostheses. We successfully decode speech in participants with either left or right hemisphere coverage, which could lead to speech prostheses in patients with speech deficits resulting from left hemisphere damage. Further, we use an occlusion analysis to identify cortical regions contributing to speech decoding across our models. Finally, we provide open-source code for our two-stage training pipeline along with associated preprocessing and visualization tools to enable reproducible research and drive research across the speech science and prostheses communities.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3