Subject-Agnostic Transformer-Based Neural Speech Decoding from Surface and Depth Electrode Signals

Author:

Chen Junbo,Chen Xupeng,Wang Ran,Le Chenqian,Khalilian-Gourtani Amirhossein,Jensen Erika,Dugan Patricia,Doyle Werner,Devinsky Orrin,Friedman Daniel,Flinker Adeen,Wang Yao

Abstract

AbstractObjectiveThis study investigates speech decoding from neural signals captured by intracranial electrodes. Most prior works can only work with electrodes on a 2D grid (i.e., Electrocorticographic or ECoG array) and data from a single patient. We aim to design a deep-learning model architecture that can accommodate both surface (ECoG) and depth (stereotactic EEG or sEEG) electrodes. The architecture should allow training on data from multiple participants with large variability in electrode placements and the trained model should perform well on participants unseen during training.ApproachWe propose a novel transformer-based model architecture named SwinTW that can work with arbitrarily positioned electrodes, by leveraging their 3D locations on the cortex rather than their positions on a 2D grid. We train both subject-specific models using data from a single participant as well as multi-patient models exploiting data from multiple participants.Main ResultsThe subject-specific models using only low-density 8x8 ECoG data achieved high decoding Pearson Correlation Coefficient with ground truth spectrogram (PCC=0.817), over N=43 participants, outperforming our prior convolutional ResNet model and the 3D Swin transformer model. Incorporating additional strip, depth, and grid electrodes available in each participant (N=39) led to further improvement (PCC=0.838). For participants with only sEEG electrodes (N=9), subject-specific models still enjoy comparable performance with an average PCC=0.798. The multi-subject models achieved high performance on unseen participants, with an average PCC=0.765 in leave-one-out cross-validation.SignificanceThe proposed SwinTW decoder enables future speech neuropros-theses to utilize any electrode placement that is clinically optimal or feasible for a particular participant, including using only depth electrodes, which are more routinely implanted in chronic neurosurgical procedures. Importantly, the generalizability of the multi-patient models suggests the exciting possibility of developing speech neuropros-theses for people with speech disability without relying on their own neural data for training, which is not always feasible.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3