Phenotype and gene ontology enrichment as guides for disease modeling in C. elegans

Author:

Angeles-Albores DavidORCID,Lee Raymond YN,Chan Juancarlos,Sternberg Paul WORCID

Abstract

AbstractGenome-wide experiments have the capacity to generate massive amounts of unbiased data about an organism. In order to interpret this data, dimensionality reduction techniques are required. One approach is to annotate genes using controlled languages and to test experimental datasets for term enrichment using probabilistic methods. Although gene, phenotype and anatomy ontologies exist for C. elegans, no unified software offers enrichment analyses of all the ontologies using the same methodology. Here, we present the WormBase Enrichment Suite, which offers users the ability to test all nematode ontologies simultaneously. We show that the WormBase Enrichment Suite provides valuable insight into different biological problems. Briefly, we show that phenotype enrichment analysis (PEA) can help researchers identify disease phenologs, phenotypes that are homologous across species, which can inform disease modeling in C. elegans. The WormBase Enrichment Suite analysis can also shed light on RNA-seq datasets by showing what molecular functions are enriched, which phenotypes these functions are implicated in and what tissues are overrepresented in the dataset. Finally, we explore the phenotype-anatomy relationship, showing that a small subset of highly specific tissues are disproportionately likely to cause an Egl phenotype, but inferring tissue expression from an Egl phenotype is limited to the largest tissues.

Publisher

Cold Spring Harbor Laboratory

Reference51 articles.

1. Mapping and quantifying mammalian transcriptomes by RNA-Seq

2. Johnson DS , Mortazavi A , Myers RM (2007) Protein-DNA Interactions. (June):1497–1503.

3. Gene Ontology: tool for the unification of biology

4. Use and misuse of the gene ontology annotations. Nature reviews;Genetics,2008

5. Worm Phenotype Ontology: Integrating phenotype data within and beyond the C. elegans community

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3