Targeted DamID in C. elegans reveals a role for LIN-22 and NHR-25 in epidermal cell differentiation

Author:

Katsanos Dimitris,Barkoulas MichalisORCID

Abstract

AbstractTranscription factors are key players in gene networks controlling cell fate specification during development. In multicellular organisms, they can display complex patterns of expression and binding to their targets, which necessitates tissue-specific characterisation of transcription factor-target interactions. Here, we focus on C. elegans seam cell development, which is used as a model of robust epidermal stem cell patterning. Despite our knowledge of multiple transcription factors playing a role in epidermal development, the composition of the gene network underlying cell fate patterning remains largely unknown. We introduce Targeted DamID (TaDa) that allows tissue-specific transcription factor target identification in intact C. elegans animals without cell isolation. We employ this method to recover putative targets in the epidermis for two transcription factors, the HES1 homologue LIN-22 and the NR5A1/2 nuclear hormone receptor NHR-25. Using single-molecule FISH (smFISH), we validate TaDa predictions and reveal a role for these transcription factors in promoting cell differentiation, as well as an unusual link between a HES factor and the Wnt signalling pathway.Our results expand our understanding of the epidermal gene network and highlight the power of TaDa to dissect the architecture of tissue-specific gene regulatory networks.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3