Author:
Zhang Weina,Qin Shuhao,Xu Xuexue,Zhang Junlian,Liu Yuhui
Abstract
AbstractThe soil bacterial composition is vital for sustainable agriculture due to its importance in biogeochemical processes in the soil environment. Multiple management systems, such as different furrow-ridge mulched cropping systems, have been established to reduce the damage caused by continuous cropping of potato (Solanum tuberosumL.). However, little is known about the responses of soil bacterial biomass and diversity to these systems. In this study, six different ridge-furrow film planting patterns were tested in a 2-year continuous cropping potato field: flat plot without mulch (CK), flat plot with mulch (T1), on-ridge planting with full mulch (T2), on-furrow planting with full mulch (T3), on-ridge planting with half mulch (T4), and on-furrow planting with half mulch (T5). The soil physicochemical properties and bacterial composition were significantly affected by the planting pattern. Mulched soils, especially T2, maintained better soil physicochemical properties than controls. Fully mulched soil maintained higher bacterial biomass and diversity. Among the dominant genera, the abundances ofNitrosomonadaceaein T2 and T4 were higher than those in the other treatments. Consequently, compared with the other treatments, on-ridge with mulching patterns resulted in better soil physicochemical properties and high bacterial biomass and diversity, which could reduce the economic losses due to potato production by continuous cropping.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献