Preexisting hippocampal network dynamics constrain optogenetically induced place fields

Author:

McKenzie SamORCID,Huszár Roman,English Daniel F.,Kim Kanghwan,Yoon Euisik,Buzsáki György

Abstract

SummaryNeuronal circuits face a fundamental tension between maintaining existing structure and changing to accommodate new information. Memory models often emphasize the need to encode novel patterns of neural activity imposed by “bottom-up” sensory drive. In such models, learning is achieved through synaptic alterations, a process which potentially interferes with previously stored knowledge 1-3. Alternatively, neuronal circuits generate and maintain a preconfigured stable dynamic, sometimes referred to as an attractor, manifold, or schema 4-7, with a large reservoir of patterns available for matching with novel experiences 8-13. Here, we show that incorporation of arbitrary signals is constrained by pre-existing circuit dynamics. We optogenetically stimulated small groups of hippocampal neurons as mice traversed a chosen segment of a linear track, mimicking the emergence of place fields 1,14,15, while simultaneously recording the activity of stimulated and non-stimulated neighboring cells. Stimulation of principal neurons in CA1, but less so CA3 or the dentate gyrus, induced persistent place field remapping. Novel place fields emerged in both stimulated and non-stimulated neurons, which could be predicted from sporadic firing in the new place field location and the temporal relationship to peer neurons prior to the optogenetic perturbation. Circuit modification was reflected by altered spike transmission between connected pyramidal cell – inhibitory interneuron pairs, which persisted during post-experience sleep. We hypothesize that optogenetic perturbation unmasked sub-threshold, pre-existing place fields16,17. Plasticity in recurrent/lateral inhibition may drive learning through rapid exploration of existing states.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3