Characterizing the allele- and haplotype-specific copy number landscape of cancer genomes at single-cell resolution with CHISEL

Author:

Zaccaria SimoneORCID,Raphael Benjamin J.ORCID

Abstract

AbstractSingle-cell barcoding technologies have recently been used to perform whole-genome sequencing of thousands of individual cells in parallel. These technologies provide the opportunity to characterize genomic heterogeneity at single-cell resolution, but their extremely low sequencing coverage (<0.05X per cell) has thus far restricted their use to identification of the total copy number of large multi-megabase segments in individual cells. However, total copy numbers do not distinguish between the two homologous chromosomes in humans, and thus provide a limited view of tumor heterogeneity and evolution missing important events such as copy-neutral loss-of-heterozygosity (LOH). We introduce CHISEL, the first method to infer allele- and haplotype-specific copy numbers in single cells and subpopulations of cells by aggregating sparse signal across thousands of individual cells. We applied CHISEL to 10 single-cell sequencing datasets from 2 breast cancer patients, each dataset containing ≈2000 cells. We identified extensive allele-specific copy-number aberrations (CNAs) in these samples including copy-neutral LOH, whole-genome duplications (WGDs), and mirrored-subclonal CNAs in subpopulations of cells. These allele-specific CNAs alter the copy number of genomic regions containing well-known breast cancer genes including TP53, BRCA2, and PTEN but are invisible to total copy number analysis. We utilized CHISEL’s allele- and haplotype-specific copy numbers to derive a more refined reconstruction of tumor evolution: timing allele-specific CNAs before and after WGDs, identifying low-frequency subclones distinguished by unique CNAs, and uncovering evidence of convergent evolution. This reconstruction is supported by orthogonal analysis of somatic single-nucleotide variants (SNVs) obtained by pooling barcoded reads across clones defined by CHISEL.

Publisher

Cold Spring Harbor Laboratory

Reference70 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3