Circuit-specific dendritic development in the piriform cortex

Author:

Moreno-Velasquez Laura,Lo HungORCID,Lenzi Stephen,Kaehne Malte,Breustedt Jörg,Schmitz Dietmar,Rüdiger Sten,Johenning Friedrich W.

Abstract

AbstractDendritic geometry is largely determined during postnatal development and has a substantial impact on neural function. In sensory processing, postnatal development of the dendritic tree is affected by two dominant circuit motifs, ascending sensory feedforward inputs and descending and local recurrent connections. In the three-layered anterior piriform cortex, neurons in the sublayers 2a and 2b display vertical segregation of these two circuit motifs. Here, we combined electrophysiology, detailed morphometry and Ca2+ imaging in acute mouse brain slices and modeling to study circuit specific aspects of dendritic development. We observed that determination of branching complexity, dendritic length increases and pruning occurred in distinct developmental phases. Layer 2a and layer 2b neurons displayed developmental phase specific differences between their apical and basal dendritic trees related to differences in circuit incorporation. We further identified functional candidate mechanisms for circuit-specific differences in postnatal dendritic growth in sublayers 2a and 2b at the meso- and microscale level. Already in the first postnatal week, functional connectivity of layer 2a and layer 2b neurons during early spontaneous network activity scales with differences in basal dendritic growth. During the early critical period of sensory plasticity in the piriform cortex, our data is consistent with a model that proposes a role for dendritic NMDA-spikes in selecting branches for survival during developmental pruning in apical dendrites. The different stages of the morphological and functional developmental pattern differences between layer 2a and layer 2b neurons demonstrate the complex interplay between dendritic development and circuit specificity.Significance StatementSensory cortices are composed of ascending sensory circuits that relay sensory information from the periphery and recurrent intracortical circuits. Dendritic trees of neurons are shaped during development and determine which circuits contribute to the neuronal input space. To date, circuit-specific aspects of dendritic development and the underlying mechanisms are poorly understood. Here, we investigate dendritic development in layer 2 of the piriform cortex, a three-layered palaeocortex that displays a clear vertical segregation of sensory and recurrent circuits. Our results suggest that dendritic development occurs in distinct developmental phases with different circuit-specific properties. We further identify candidate mechanisms for neuronal activity patterns that could determine differences in circuit-specific dendritic development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3