DNA-dependent protein synthesis exhibited by cancer shed particulates

Author:

Ulaganathan Vijay K.ORCID,Ullrich Axel

Abstract

AbstractGenetic heterogeneity in tumours is the bonafide hallmark applicable to all cancer types (Burrell et al, 2013). Furthermore, deregulated ribosome biogenesis and elevated protein biosynthesis have been consistently associated with multiple cancer types (Ruggero, 2012; Ruggero & Pandolfi, 2003). We observed that under cultivation conditions almost all cancer cell types actively shed significant amount of particulates as compared to non-malignant cell lines requiring frequent changing of cultivation media. We therefore asked if cancer cell shed particulates might still retain biological activity associated with protein biosynthesis. Here, we communicate our observations of DNA-dependent protein biosynthetic activity exhibited by the cell-free particulates shed by the cancer cell lines. Using pulsed isotope labelling approach we confirmed the cell-free protein translation activity exhibited by particulates shed by various cancer cell lines. Interestingly, the bioactivity was largely dependent on temperature, pH and on 3’-DNA elements. Our results demonstrate that cancer shed particulates are biologically active and may potentially drive expression of tissue non-specific promoters in distant organs.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3