Hybrid Support Vector Regression Model and K-Fold Cross Validation for Water Quality Index Prediction in Langat River, Malaysia

Author:

Mamat NaeimahORCID,Hamzah Firdaus Mohamad,Jaafar Othman

Abstract

AbstractWater quality analysis is an important step in water resources management and needs to be managed efficiently to control any pollution that may affect the ecosystem and to ensure the environmental standards are being met. The development of water quality prediction model is an important step towards better water quality management of rivers. The objective of this work is to utilize a hybrid of Support Vector Regression (SVR) modelling and K-fold cross-validation as a tool for WQI prediction. According to Department of Environment (DOE) Malaysia, a standard Water Quality Index (WQI) is a function of six water quality parameters, namely Ammoniacal Nitrogen (AN), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Dissolved Oxygen (DO), pH, and Suspended Solids (SS). In this research, Support Vector Regression (SVR) model is combined with K-fold Cross Validation (CV) method to predict WQI in Langat River, Kajang. Two monitoring stations i.e., L15 and L04 have been monitored monthly for ten years as a case study. A series of results were produced to select the final model namely Kernel Function performance, Hyperparameter Kernel value, K-fold CV value and sets of prediction model value, considering all of them undergone training and testing phases. It is found that SVR model i.e., Nu-RBF combined with K-fold CV i.e., 5-fold has successfully predicted WQI with efficient cost and timely manner. As a conclusion, SVR model and K-fold CV method are very powerful tools in statistical analysis and can be used not limited in water quality application only but in any engineering application.

Publisher

Cold Spring Harbor Laboratory

Reference55 articles.

1. A. Danades , D. Pratama , D. Anggraini and D. Anggriani , 6th International Conference on System Engineering and Technology (ICSET), 2016.

2. Water Quality Prediction Model Based Support Vector Machine Model for Ungauged River Catchment under Dual Scenarios;Water,2019

3. Support vector regression-based model for prediction of behavior stone column parameters in soft clay under highway embankment;Neural Comput. Appl,2018

4. Classification of river water quality using multivariate analysis;Int. Conf. Env. Forensics 2015 Proc. Env. Sci,2015

5. Water quality monitoring strategies—A review and future perspectives;Sci. Total Environ,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3