Applicability of Neighborhood and Building Scale Wastewater-Based Genomic Epidemiology to Track the SARS-CoV-2 Pandemic and other Pathogens

Author:

Spurbeck Rachel R.ORCID,Minard-Smith Angela T.ORCID,Catlin Lindsay A.ORCID

Abstract

AbstractThe benefits of wastewater-based epidemiology (WBE) for tracking the viral load of SARS-CoV-2, the causative agent of COVID-19, have become apparent since the start of the pandemic. However, most sampling occurs at the wastewater treatment plant influent and therefore can only monitor SARS-CoV-2 concentration and spread within the entire catchment, which can encompass multiple municipalities. Furthermore, most WBE only quantifies the virus, and therefore miss crucial information that can be gained by sequencing SARS-CoV-2. Here we demonstrate feasibility of sampling at the neighborhood or building complex level using a mix of quantitative polymerase chain reaction (qPCR) and targeted sequencing to provide a more refined understanding of the local dynamics of SARS-CoV-2 strains. When coupled with the higher-level treatment plant samples, this creates an opportunity for health officials to monitor the spread of the virus at different spatial and temporal scales to inform policy decisions.Here we demonstrate the feasibility of tracking SARS-CoV-2 at the neighborhood, hospital, and nursing home level with the ability to detect one COVID-19 positive out of 60 nursing home residents. The viral load obtained was correlative with the number of COVID-19 patients being treated in the hospital. Sequencing of the samples over time demonstrated that nonsynonymous mutations fluctuate in the viral population, and wastewater-based sequencing could be an efficient approach to monitor for vaccine or convalescent plasma escape mutants, as well as mutations that could reduce the efficacy of diagnostics. Furthermore, while SARS-CoV-2 was detected by untargeted RNA sequencing, qPCR and targeted whole genome amplicon sequencing were more reliable methods for tracking the pandemic. From our sequencing data, clades and shifts in mutation profiles within the community were traceable and could be used to determine if vaccine or diagnostics need to be adapted to ensure continued efficacy.Graphical AbstractHighlightsNeighborhood or building level wastewater analysis accurately detects SARS-CoV-2SARS-CoV-2 was detected in wastewater from one infected person out of 60 residentsTotal RNAseq did not accurately detect SARS-CoV-2 in wastewater samples.Targeted whole genome sequencing of wastewater samples identified Spike mutations.

Publisher

Cold Spring Harbor Laboratory

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3