Genomes of gut bacteria from Nasonia wasps shed light on phylosymbiosis and microbe-assisted hybrid breakdown

Author:

Cross Karissa L.ORCID,Leigh Brittany A.ORCID,Hatmaker E. AnneORCID,Mikaelyan AramORCID,Miller Asia K.ORCID,Bordenstein Seth R.ORCID

Abstract

ABSTRACTPhylosymbiosis is a cross-system trend whereby microbial community relationships recapitulate the host phylogeny. In Nasonia parasitoid wasps, phylosymbiosis occurs throughout development, is distinguishable between sexes, and benefits host development and survival. Moreover, the microbiome shifts in hybrids as a rare Proteus bacteria in the microbiome becomes dominant. The larval hybrids then catastrophically succumb to bacterial-assisted lethality and reproductive isolation between the species. Two important questions for understanding phylosymbiosis and bacterial-assisted lethality in hybrids are: (i) Do the Nasonia bacterial genomes differ from other animal isolates and (ii) Are the hybrid bacterial genomes the same as those in the parental species? Here we report the cultivation, whole genome sequencing, and comparative analyses of the most abundant gut bacteria in Nasonia larvae, Providencia rettgeri and Proteus mirabilis. Characterization of new isolates shows Proteus mirabilis forms a more robust biofilm than Providencia rettgeri and when grown in co-culture, Proteus mirabilis significantly outcompetes Providencia rettgeri. Providencia rettgeri genomes from Nasonia are similar to each other and more divergent to pathogenic, human-associates strains. Proteus mirabilis from N. vitripennis, N. giraulti, and their hybrid offspring are nearly identical and relatively distinct from human isolates. These results indicate that members of the larval gut microbiome within Nasonia are most similar to each other, and the strain of the dominant Proteus mirabilis in hybrids is resident in parental species. Holobiont interactions between shared, resident members of the wasp microbiome and the host underpin phylosymbiosis and hybrid breakdown.IMPORTANCEAnimal and plant hosts often establish intimate relationships with their microbiomes. In varied environments, closely-related host species share more similar microbiomes, a pattern termed phylosymbiosis. When phylosymbiosis is functionally significant and beneficial, microbial transplants between host species or host hybridization can have detrimental consequences on host biology. In the Nasonia parasitoid wasp genus that contains a phylosymbiotic gut community, both effects occur and provide evidence for selective pressures on the holobiont. Here, we show that bacterial genomes in Nasonia differ from other environments and harbor genes with unique functions that may regulate phylosymbiotic relationships. Furthermore, the bacteria in hybrids are identical to parental species, thus supporting a hologenomic tenet that the same members of the microbiome and the host genome impact phylosymbiosis, hybrid breakdown, and speciation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3