Abstract
AbstractCortical circuits are thought to contain a large number of cell types that coordinate to produce behavior. Current in vivo methods rely on clustering of specified features of extracellular waveforms to identify putative cell types, but these capture only a small amount of variation. Here, we develop a new method (WaveMAP) that combines non-linear dimensionality reduction with graph clustering to identify putative cell types. We apply WaveMAP to extracellular waveforms recorded from dorsal premotor cortex of macaque monkeys performing a decision-making task. Using WaveMAP, we robustly establish eight waveform clusters and show that these clusters recapitulate previously identified narrow- and broad-spiking types while revealing previously unknown diversity within these subtypes. The eight clusters exhibited distinct laminar distributions, characteristic firing rate patterns, and decision-related dynamics. Such insights were weaker when using feature-based approaches. WaveMAP therefore provides a more nuanced understanding of the dynamics of cell types in cortical circuits.SignificanceHow different cell types sculpt activity patterns in brain areas associated with decision-making is a fundamentally unresolved problem in neuroscience. In monkeys, and other species where transgenic access is not yet possible, identifying physiological types in vivo relies on only a few discrete user-specified features of extracellular waveforms to identify cell types. Here, we show that non-linear dimensionality reduction with graph clustering applied to the entire extracellular waveform can delineate many different putative cell types and does so in an interpretable manner. We show that this method reveals previously undocumented physiological, functional, and laminar diversity in the dorsal premotor cortex of monkeys, a key brain area implicated in decision-making.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献