Heterogeneous strains in tissue collagen show that high strains locally suppress degradation by collagenase

Author:

Saini K.,Tiwari M.,Cho S.,Jalil A.,Vashisth M.,Irianto J.,Andrechak J.,Dooling L.,Alvey C.,Kasznel A.,Chenoweth D.,Yamamoto K.,Discher D.

Abstract

AbstractCollagen, the most abundant protein in mammals, contributes to the physical properties of different tissues during development, homeostasis, and disease. The adaptation of physical properties of tissues to mechanical stimuli is thus dependent on the control of tissue collagen levels by well-regulated synthesis and degradation of collagen. Importantly, how various molecular-level events within a tissue sustaining a range of mechanical strains contribute towards maintaining its collagen levels, remains unclear to date. Such molecular level processes in tissues are studied here in the case of isolated tendons consisting of collagen fibrils oriented along tissue loading-axis and beating embryonic hearts to gain understanding of mechanical load dependent tissue sculpting. Using a novel bioreactor design, starved mice tail tendon fascicles were used as a “cell-free” model and were subjected to heterogeneous and uniaxial deformation modes. Patterned photobleaching of fluorescent probes, a novel Aza-peptide or dye, on fascicles used to quantify tissue strains. Tissue microstructure was simultaneously imaged using second harmonic generation (SHG) signal to assess tissue collagen content while deformed fascicle samples were exposed to purified matrix metalloproteinase-1 (MMP-1) or bacterial collagenase (BC). A decrease in the degradation rate (relative to strain-free) was observed for physiological strain limits of tendon tissue (i.e. ∼5-8%) while at higher strains (i.e. pathological) the degradation rate was independent of strain magnitude changes. Interestingly, the strain dependence of degradation rate was independent of cleavage-site specificity of the collagenase molecules and the mode of tendon tissue deformation. Although spatially different within a tissue sample, the values of strain, degradation rate and collagen fiber organization with time during degradation of each tendon fascicle region were highly correlated. Tendon regions dominated by collagen fibers inclined to fascicle-axis were observed to follow non-affine deformation. The dependence of the degradation rate on mechanical strain is due to sequestration of collagen cleavage sites within fibrils. Permeation, tissue mass density and mobility of fluorescent collagenase and dextran are strain-independent for fascicle strains up to ∼5-8% while the degradation rate is positively correlated to unfolded triple-helical collagen content. Normal beating chick hearts subjected to ∼5% peak strain in a spatiotemporal coordinate contractile wave were observed to maintain their collagen mass until the beating strain is suppressed by inhibition of myosin-II. Based on the presence of exogeneous MMP inhibitors, endogenous MMPs within the non-beating hearts degrade the collagens immediately (in ∼30-60 mins). Both tissue systems under mechanical strains suggest degradative sculpting where mechanical strain-dependent collagen fibril architecture changes appear to play a key role in determining collagen lifetime within tissues.Graphical abstract

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3