Abstract
AbstractDeconstruction of plant cell walls is imperative to global carbon cycling and sustainability efforts. Selected microbes degrade plant fibers using extremely efficient multi-enzymatic cellulosomes assemblies. Organization of cellulosomes on the bacterial cell surface and their ecological regulation remain elusive. By combining structural methodologies with molecular and biochemical approaches on the canonical Clostridium thermocellum system, we provide an unprecedented view into the in-situ structure and distribution of cellulosomal enzymes while interacting with their cellulosic substrate during fiber degradation. Structural exploration of growing cultures revealed isogenic phenotypic heterogeneity of cellulosome organization on single cells across the bacterial population, suggesting a division-of labor strategy driven by product-dependent dynamics. This study demonstrates how structural biology under near-physiological conditions can be employed to develop ecological hypotheses to understand microbial plant-fiber degradation at the single-cell nanoscale level.One Sentence SummaryThis study contributes critical insights into the in-situ organization of cellulosomes and their cellulosic substrates and provides evidence for phenotypic heterogeneity, with dynamic, growth phase-dependent organization of the fiber-degrading machinery.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献