Cold-acclimation induces life stage-specific responses in the cardiac proteome of Western painted turtles (Chrysemys picta bellii): implications for anoxia tolerance

Author:

Alderman Sarah L.ORCID,Riggs Claire L.ORCID,Bullingham Oliver,Gillis Todd E.ORCID,Warren Daniel E.ORCID

Abstract

AbstractWestern painted turtles(Chrysemys picta bellii)are the most anoxia-tolerant tetrapod. Survival time improves at low temperature and during ontogeny, such that adults acclimated to 3°C survive far longer without oxygen than either warm-acclimated adults or cold-acclimated hatchlings. Since protein synthesis is rapidly suppressed to save energy at the onset of anoxia exposure, this study tested the hypothesis that cold-acclimation would evoke preparatory changes in protein expression that would support enhanced anoxia survival in adult but not hatchling turtles. To test this, adult and hatchling turtles were acclimated to either 20°C (warm) or 3°C (cold) for 5 weeks, and then the heart ventricles were collected for quantitative proteomic analysis using labeled isobaric tags and mass spectrometry. The relative abundances of 1316 identified proteins were compared between temperatures and developmental stages. The effect of cold-acclimation on the cardiac proteome was most evident when life stage was included as a covariable, suggesting that ontogenic differences in anoxia tolerance may be predicated on successful maturation of the heart from its hatchling to adult form and, only after this maturation occurs, will cold-acclimation induce protein expression changes appropriate for supporting heart function during prolonged anoxia. The main differences between the hatchling and adult cardiac proteomes reflect an increase in metabolic scope that included more myoglobin and increased investment in both aerobic and anaerobic energy pathways. Mitochondrial structure and function were key targets of life stage- and temperature-induced changes to the cardiac proteome, including reduced complex II proteins in cold-acclimated adults that may help down-regulate the electron transport system and avoid succinate accumulation during anoxia. Therefore, targeted cold-induced changes to the cardiac proteome may be a contributing mechanism for stagespecific anoxia tolerance in turtles.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3