Decreased total ventricular and mitochondrial protein synthesis during extended anoxia in turtle heart

Author:

Bailey J. R.1,Driedzic W. R.1

Affiliation:

1. Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada.

Abstract

The turtle heart provides a model system to study the effects of anoxia on protein synthesis without the potentially confounding factor of contractile failure and decreased ATP levels. Protein synthesis, as measured by 3H-labeled phenylalanine incorporation, was studied under conditions of normoxia and anoxia in isolated perfused turtle [Trachemys (= Pseudemys) scripta elegans] hearts at 15 degrees C. Heart rate, cardiac output, and ventricular pressure development were unaffected by 2 or 3 h of anoxia. Despite the anoxia, energy levels in the heart were presumably still high, since contractility was maintained. RNA content of ventricle decreased after anoxic perfusion. Rates of total protein synthesis rates in ventricle were threefold lower under anoxia than under normoxia. These findings suggest that the total level of RNA is one determinant of protein synthesis. Incorporation of label into protein extracted from mitochondria was also assessed. The ratio of mitochondrial to whole ventricular protein synthesis was significantly lower after anoxia, revealing preferential control mechanisms under anoxia between the synthesis of total cellular protein and protein destined for mitochondria. Isolated mitochondria were still coupled after 2 or 3 h of anoxia. In effect, the mitochondria enter into a state of hypometabolism in terms of rates of ATP synthesis and protein synthesis, but functional integrity is maintained. The decrease in protein synthesis in general and mitochondrial protein synthesis in particular may represent an adaptation to allow the partitioning of the available energy resources toward mechanical function during anoxia.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3