Human cytomegalovirus blocks canonical TGFβ signaling during lytic infection to limit induction of type I interferons

Author:

Pham Andrew H.ORCID,Mitchell Jennifer,Botto Sara,Pryke Kara M.,Defilippis Victor R.,Hancock Meaghan H.ORCID

Abstract

AbstractHuman cytomegalovirus (HCMV) microRNAs (miRNAs) significantly rewire host signaling pathways to support the viral lifecycle and regulate host cell responses. Here we show that SMAD3 expression is regulated by HCMV miR-UL22A and contributes to the IRF7-mediated induction of type I IFNs and IFN-stimulated genes (ISGs) in human fibroblasts. Addition of exogenous TGFβ interferes with the replication of a miR-UL22A mutant virus in a SMAD3-dependent manner in wild type fibroblasts, but not in cells lacking IRF7, indicating that downregulation of SMAD3 expression to limit IFN induction is important for efficient lytic replication. These findings uncover a novel interplay between SMAD3 and innate immunity during HCMV infection and highlight the role of viral miRNAs in modulating these responses.Author SummaryCells trigger the interferon (IFN) response to induce the expression of cellular genes that limit virus replication. In turn, viruses have evolved numerous countermeasures to avoid the effects of IFN signaling. Using a microRNA (miRNA) mutant virus we have uncovered a novel means of regulating the IFN response during human cytomegalovirus (HCMV) infection. Lytic HCMV infection induces the production of TGFβ, which binds to the TGFβ receptor and activates the receptor-associated SMAD SMAD3. SMAD3, together with IRF7, induces the expression of IFNβ and downstream IFN-stimulated genes in human fibroblasts. To counteract this, HCMV miR-UL22A, along with other HCMV gene products, directly targets SMAD3 for downregulation. Infection of fibroblasts with a miR-UL22A mutant virus results in enhanced type I IFN production in a SMAD3-dependent manner and the virus is impaired for growth in the presence of TGFβ, but only when both SMAD3 and IRF7 are present, highlighting the unique interaction between TGFβ and innate immune signaling.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3