Genetic Analysis of Right Heart Structure and Function in 40,000 People

Author:

Pirruccello James P.ORCID,Achille Paolo DiORCID,Nauffal VictorORCID,Nekoui MahanORCID,Friedman Samuel N.,Klarqvist Marcus D. R.ORCID,Chaffin Mark D.ORCID,Khurshid ShaanORCID,Roselli CarolinaORCID,Batra PuneetORCID,Ng KenneyORCID,Lubitz Steven A.ORCID,Ho Jennifer E.ORCID,Lindsay Mark E.ORCID,Philippakis Anthony A.,Ellinor Patrick T.ORCID

Abstract

The heart evolved hundreds of millions of years ago. During mammalian evolution, the cardiovascular system developed with complete separation between pulmonary and systemic circulations incorporated into a single pump with chambers dedicated to each circulation. A lower pressure right heart chamber supplies deoxygenated blood to the lungs, while a high pressure left heart chamber supplies oxygenated blood to the rest of the body. Due to the complexity of morphogenic cardiac looping and septation required to form these two chambers, congenital heart diseases often involve maldevelopment of the evolutionarily recent right heart chamber. Additionally, some diseases predominantly affect structures of the right heart, including arrhythmogenic right ventricular cardiomyopathy (ARVC) and pulmonary hypertension. To gain insight into right heart structure and function, we fine-tuned deep learning models to recognize the right atrium, the right ventricle, and the pulmonary artery, and then used those models to measure right heart structures in over 40,000 individuals from the UK Biobank with magnetic resonance imaging. We found associations between these measurements and clinical disease including pulmonary hypertension and dilated cardiomyopathy. We then conducted genome-wide association studies, identifying 104 distinct loci associated with at least one right heart measurement. Several of these loci were found near genes previously linked with congenital heart disease, such asNKX2-5, TBX3, WNT9B, andGATA4. We also observed interesting commonalities and differences in association patterns at genetic loci linked with both right and left ventricular measurements. Finally, we found that a polygenic predictor of right ventricular end systolic volume was associated with incident dilated cardiomyopathy (HR 1.28 per standard deviation; P = 2.4E-10), and remained a significant predictor of disease even after accounting for a left ventricular polygenic score. Harnessing deep learning to perform large-scale cardiac phenotyping, our results yield insights into the genetic and clinical determinants of right heart structure and function.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3