Atrial myocardium derives from the posterior region of the second heart field, which acquires left-right identity as Pitx2c is expressed

Author:

Galli Daniela1,Domínguez Jorge N.2,Zaffran Stephane1,Munk Andrew1,Brown Nigel A.2,Buckingham Margaret E.1

Affiliation:

1. Department of Developmental Biology, URA 2578 CNRS, Pasteur Institute, 25 rue du Docteur Roux, 75724 Paris, France.

2. Division of Basic Medical Sciences, St George's, University of London, London,UK.

Abstract

Splanchnic mesoderm in the region described as the second heart field (SHF)is marked by Islet1 expression in the mouse embryo. The anterior part of this region expresses a number of markers, including Fgf10, and the contribution of these cells to outflow tract and right ventricular myocardium has been established. We now show that the posterior region also has myocardial potential, giving rise specifically to differentiated cells of the atria. This conclusion is based on explant experiments using endogenous and transgenic markers and on DiI labelling, followed by embryo culture. Progenitor cells in the right or left posterior SHF contribute to the right or left common atrium, respectively. Explant experiments with transgenic embryos,in which the transgene marks the right atrium, show that atrial progenitor cells acquire right-left identity between the 4- and 6-somite stages, at the time when Pitx2c is first expressed. Manipulation of Pitx2c, by gain-and loss-of-function, shows that it represses the transgenic marker of right atrial identity. A repressive effect is also seen on the proliferation of cells in the left sinus venosus and in cultured explants from the left side of the posterior SHF. This report provides new insights into the contribution of the SHF to atrial myocardium and the effect of Pitx2c on the formation of the left atrium.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 140 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Morphologic-anatomic diagnosis: Normal and pathologic cardiac morphology;Nadas' Pediatric Cardiology;2025

2. In Silico Characterization of Pathogenic Homeodomain Missense Mutations in the PITX2 Gene;Biochemical Genetics;2024-05-27

3. Cardiac Progenitor Cells of the First and Second Heart Fields;Advances in Experimental Medicine and Biology;2024

4. TAPVR: Molecular Pathways and Animal Models;Advances in Experimental Medicine and Biology;2024

5. Human Cardiac Development;Advances in Experimental Medicine and Biology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3