Jumper Enables Discontinuous Transcript Assembly in Coronaviruses

Author:

Sashittal PalashORCID,Zhang ChuanyiORCID,Peng JianORCID,El-Kebir MohammedORCID

Abstract

AbstractGenes in SARS-CoV-2 and, more generally, in viruses in the order of Nidovirales are expressed by a process of discontinuous transcription mediated by the viral RNA-dependent RNA polymerase. This process is distinct from alternative splicing in eukaryotes, rendering current transcript assembly methods unsuitable to Nidovirales sequencing samples. Here, we introduce the Discontinuous Transcript Assembly problem of finding transcripts and their abundances c given an alignment under a maximum likelihood model that accounts for varying transcript lengths. Underpinning our approach is the concept of a segment graph, a directed acyclic graph that, distinct from the splice graph used to characterize alternative splicing, has a unique Hamiltonian path. We provide a compact characterization of solutions as subsets of non-overlapping edges in this graph, enabling the formulation of an efficient mixed integer linear program. We show using simulations that our method, Jumper, drastically outperforms existing methods for classical transcript assembly. On short-read data of SARS-CoV-1 and SARS-CoV-2 samples, we find that Jumper not only identifies canonical transcripts that are part of the reference transcriptome, but also predicts expression of non-canonical transcripts that are well supported by direct evidence from long-read data, presence in multiple, independent samples or a conserved core sequence. Jumper enables detailed analyses of Nidovirales transcriptomes.Code availabilitySoftware is available at https://github.com/elkebir-group/Jumper

Publisher

Cold Spring Harbor Laboratory

Reference48 articles.

1. The Genome Organization of the Nidovirales: Similarities and Differences between Arteri-, Toro-, and Coronaviruses

2. Helena Jane Maier , Erica Bickerton , Paul Britton , et al. Coronaviruses: methods and protocols. Springer Berlin, 2015.

3. Dongwan Kim , Joo-Yeon Lee , Jeong-Sun Yang , Jun Won Kim , V Narry Kim , and Hyeshik Chang . The architecture of SARS-CoV-2 transcriptome. Cell, 2020.

4. De novo assembly and analysis of RNA-seq data;Nature Methods,2010

5. Full-length transcriptome assembly from RNA-Seq data without a reference genome

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3