Abstract
AbstractThe oral somatosensory system relays essential information about mechanical stimuli to enable oral functions such as feeding and speech. The neurochemical and anatomical diversity of sensory neurons across oral cavity sites have not been systematically compared. To address this gap, we analyzed healthy human tongue and hard palate innervation. Biopsies were collected from 12 volunteers and underwent multiplex fluorescent immunohistochemistry (≥2 specimens per marker/structure). Afferents were analyzed for markers of neurons (βIII tubulin), myelinated afferents (neurofilament heavy, NFH), and Merkel cells and taste cells (keratin 20, K20). Hard-palate innervation included Meissner’s corpuscles, glomerular endings, Merkel cell-neurite complexes, and free nerve endings. The organization of these somatosensory endings is reminiscent of fingertips, suggesting that the hard palate is equipped with a rich repertoire of sensory neurons for pressure sensing and spatial localization of mechanical inputs, which are essential for speech production and feeding. Likewise, the tongue is innervated by afferents that impart it with exquisite acuity and detection of moving stimuli that support flavor construction and speech. Filiform papillae contain end bulbs of Krause, as well as endings that have not been previously reported, including subepithelial neuronal densities, and NFH+ neurons innervating basal epithelium. Fungiform papillae had Meissner’s corpuscles and densities of NFH+ intraepithelial neurons surrounding taste buds. The differing compositions of sensory endings within filiform and fungiform papillae suggest that these structures have distinct roles in mechanosensation. Collectively, this study has identified previously undescribed afferent endings in human oral tissues and provides an anatomical framework for understanding oral mechanosensory functions.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献