Localization of TRP channels in healthy oral mucosa from human donors

Author:

Moayedi YaldaORCID,Michlig Stephanie,Park Mark,Koch Alia,Lumpkin Ellen AORCID

Abstract

AbstractThe oral cavity is exposed to a remarkable range of noxious and innocuous conditions, including temperature fluctuations, mechanical forces, inflammation and environmental and endogenous chemicals. How such changes in the oral environment are sensed by oral cells and tissues is not completely understood. Transient receptor potential (TRP) ion channels are a diverse family of molecular receptors that are activated by chemicals, temperature changes, and tissue damage. In non-neuronal cells, TRP channels play roles in inflammation, as well as tissue development and maintenance. In somatosensory neurons, TRP channels mediate nociception, thermosensation and chemosensation. To assess whether TRP channels might be involved in environmental sensing in the human oral cavity, we investigated the distribution of TRP channels in human tongue and hard palate. Oral biopsies were collected from volunteers and underwent fluorescent immunohistochemistry followed by confocal imaging. We analyzed immunoreactivity of TRP channels in human oral epithelia including TRPV3, TRPV4, TRPV1, TRPM8, and TRPA1. TRPV3 and TRPV4 were expressed in epithelial cells with inverse expression patterns where they are likely to contribute to epithelial development and integrity. TRPA1 immunoreactivity was found in fibroblasts, subsets immune cells, and neurons, consistent with known roles of TRPA1 in sensory transduction, as well as in response to damage and inflammation. TRPM8 immunoreactivity was found in lamina propria cells and some neuronal subpopulations including some neurons within the end bulbs of Krause, consistent with a role in thermal sensation. TRPV1 immunoreactivity was identified in intraepithelial nerve fibers, in some end bulbs of Krause, and in epithelial cells, consistent with roles in nociception and thermosensation. Immunoreactivity of TRPM8 and TRPV1 in end bulbs of Krause suggest that these structures contain a variety of neuronal afferents, including those that mediate nociception, thermosensation and mechanotransduction. Collectively, these studies support the role of TRP channels in oral environmental surveillance and response.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3