Role of transmembrane spanning domain 1 in cystic fibrosis transmembrane conductance regulator folding

Author:

Patrick Anna E.ORCID,Millen Linda,Thomas Philip J.ORCID

Abstract

AbstractCystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) protein that disrupt its folding pathway. The most common mutation causing CF is a deletion of phenylalanine at position 508 (ΔF508). CFTR contains five domains that each form cotranslational structures that interact with other domains as they are produced and folded. CFTR is comprised of two transmembrane spanning domains (TMDs), two nucleotide binding domains (NBDs) and a unique regulatory region (R). The first domain translated, TMD1, forms interdomain interactions with the other domains in CFTR. In TMD1, long intracellular loops extend into the cytoplasm and interact with both NBDs via coupling helices and with TMD2 via transmembrane spans (TMs). We examined mutations in TMD1 to determine the impact on individual domain and multidomain constructs. We found that mutations in a TM span or in the cytosolic ICLs interfere with specific steps in the hierarchical folding of CFTR. TM1 CF-causing mutants, G85E and G91R, directly affect TMD1, whereas most ICL1 and ICL2 mutant effects become apparent in the presence of TMD2. A single mutant in ICL2 worsened CFTR trafficking in the presence of NBD2, supporting its role in the ICL2-NBD2 interface. Mutation of hydrophobic residues in ICL coupling helices tended to increased levels of pre-TMD2 biogenic intermediates but caused ER accumulation in the presence of TMD2. This suggests a tradeoff between transient stability during translation and final structure. NBD2 increased the efficiency of mutant trafficking from the ER, consistent with stabilization of the full-length constructs. While the G85E and G91R mutants in TM1 have immediately detectable effects, most of the studied mutant effects and the ΔF508 mutant are apparent after production of TMD2, supporting this intermediate as a major point of recognition by protein quality control.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3