Paths to Oblivion: Common Neural Mechanisms of Anaesthesia and Disorders of Consciousness

Author:

Luppi Andrea I.ORCID,Mediano Pedro A.M.ORCID,Rosas Fernando E.ORCID,Allanson Judith,Pickard John D.,Williams Guy B.ORCID,Craig Michael M,Finoia PaolaORCID,Peattie Alexander R.D.ORCID,Coppola Peter,Owen AdrianORCID,Naci LorinaORCID,Menon David K.ORCID,Bor DanielORCID,Stamatakis Emmanuel A.ORCID

Abstract

AbstractThe human brain generates a rich repertoire of spatiotemporal dynamics during normal wakefulness, supporting a wide variety of conscious experiences and cognitive functions. However, neural dynamics are reconfigured, in comparable ways, when consciousness is lost either due to anaesthesia or disorders of consciousness (DOC). Here, leveraging a neurobiologically realistic whole-brain computational model informed by functional MRI, diffusion MRI, and PET, we sought to identify the neurobiological mechanisms that explain the common reconfiguration of neural dynamics observed both for transient pharmacological intervention and chronic neuroanatomical injury. Our results show that, by incorporating local inhibitory action through a PET-based GABA receptor density map, our model can reproduce the brain dynamics of subjects undergoing propofol anaesthesia, and that this effect depends specifically on the spatial distribution of GABA receptors across cortical regions. Additionally, using a structural connectome obtained from DOC patients, we demonstrate how the dynamics that characterise loss of consciousness can emerge from changes in neuroanatomical connectivity. Crucially, we find that each of these two interventions generalises across datasets: a model with increased GABA-mediated inhibition can reproduce the dynamics of DOC patients’ brains, and a model with a DOC connectome is also compatible with brain dynamics observed during propofol anaesthesia. These results demonstrate how increased inhibition and connectome randomisation represent different neurobiological paths towards the characteristic dynamics of the unconscious brain. Overall, the present findings begin to disentangle the neurobiological mechanisms by which highly dissimilar perturbations of the brain’s neurodynamics can lead to unconsciousness.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3