High-order functional interactions in ageing explained via alterations in the connectome in a whole-brain model

Author:

Gatica MarilynORCID,Rosas Fernando E.ORCID,Mediano Pedro A.M.ORCID,Diez Ibai,Swinnen Stephan P.,Orio PatricioORCID,Cofré RodrigoORCID,Cortes Jesus M.ORCID

Abstract

AbstractThe human brain generates a rich repertoire of spatio-temporal activity patterns, which support a wide variety of motor and cognitive functions. These patterns of activity change with age in a multi-factorial manner. One of these factors is the variations in the brain’s connectomics that occurs along the lifespan. However, the precise relationship between high-order functional interactions and connnectomics, as well as their variations with age are largely unknown, in part due to the absence of mechanistic models that can efficiently map brain connnectomics to functional connectivity in aging. To investigate this issue, we have built a neurobiologically-realistic whole-brain computational model using both anatomical and functional MRI data from 161 participants ranging from 10 to 80 years old. We show that the age differences in high-order functional interactions can be largely explained by variations in the connectome. Based on this finding, we propose a simple neurodegeneration model that is representative of normal physiological aging. As such, when applied to connectomes of young participant it reproduces the age-variations that occur in the high-order structure of the functional data. Overall, these results begin to disentangle the mechanisms by which structural changes in the connectome lead to functional differences in the ageing brain. Our model can also serve as a starting point for modelling more complex forms of pathological ageing or cognitive deficits.Author summaryModern neuroimaging techniques allow us to study how the human brain’s anatomical architecture (a.k.a. structural connectome) changes under different conditions or interventions. Recently, using functional neuroimaging data, we have shown that complex patterns of interactions between brain areas change along the lifespan, exhibiting increased redundant interactions in the older population. However, the mechanisms that underlie these functional differences are still unclear. Here, we extended this work and hypothesized that the variations of functional patterns can be explained by the dynamics of the brain’s anatomical networks, which are known to degenerate as we age. To test this hypothesis, we implemented a whole-brain model of neuronal activity, where different brain regions are anatomically wired using real connectomes from 161 participants with ages ranging from 10 to 80 years old. Analyzing different functional aspects of brain activity when varying the empirical connectomes, we show that the increased redundancy found in the older group can indeed be explained by precise rules affecting anatomical connectivity, thus emphasizing the critical role that the brain connectome plays for shaping complex functional interactions and the efficiency in the global communication of the human brain.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3