Cleavage of Braun lipoprotein Lpp from the bacterial peptidoglycan by a paralog of L,D-transpeptidases, LdtF

Author:

Bahadur Raj,Chodisetti Pavan Kumar,Reddy Manjula

Abstract

AbstractGram-negative bacterial cell envelope is made up of an outer membrane (OM), an inner membrane (IM) that surrounds the cytoplasm, and a periplasmic space between the two membranes containing peptidoglycan (PG or murein). PG is an elastic polymer that forms a mesh-like sacculus around the IM protecting cells from turgor and environmental stress conditions. In several bacteria including E. coli, the OM is tethered to PG by an abundant OM lipoprotein, Lpp (or Braun lipoprotein) that functions to maintain the structural and functional integrity of the cell envelope. Since its discovery Lpp has been studied extensively and although L,D-transpeptidases, the enzymes that catalyse the formation of PG–Lpp linkages have been earlier identified, it is not known how these linkages are modulated. Here, using genetic and biochemical approaches, we show that LdtF (formerly yafK), a newly-identified paralog of L,D-transpeptidases in E. coli is a murein hydrolytic enzyme that catalyses cleavage of Lpp from the PG sacculus. LdtF also exhibits glycine-specific carboxypeptidase activity on muropeptides containing a terminal glycine residue. LdtF is earlier presumed to be an L,D-transpeptidase; however, our results show that it is indeed an L,D-endopeptidase that hydrolyses the products generated by the L,D-transpeptidases. To summarize, this study describes the discovery of a murein endopeptidase with a hitherto unknown catalytic specificity that removes the PG–Lpp cross-links suggesting a role for LdtF in regulation of PG-OM linkages to maintain the structural integrity of the bacterial cell envelope.Significance statementBacterial cell walls contain a unique protective exoskeleton, peptidoglycan, which is a target of several clinically important antimicrobials. In Gram-negative bacteria, peptidoglycan is covered by an additional lipid layer, outer membrane that serves as permeability barrier against entry of toxic molecules. In some bacteria, an extremely abundant lipoprotein, Lpp staples outer membrane to peptidoglycan to maintain the structural integrity of the cell envelope. In this study, we identify a previously unknown peptidoglycan hydrolytic enzyme that cleaves Lpp from the peptidoglycan sacculus and show how the outer membrane-peptidoglycan linkages are modulated in Escherichia coli. Overall, this study helps in understanding the fundamental bacterial cell wall biology and in identification of alternate drug targets for development of new antimicrobials.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3