Author:
Bahadur Raj,Chodisetti Pavan Kumar,Reddy Manjula
Abstract
AbstractGram-negative bacterial cell envelope is made up of an outer membrane (OM), an inner membrane (IM) that surrounds the cytoplasm, and a periplasmic space between the two membranes containing peptidoglycan (PG or murein). PG is an elastic polymer that forms a mesh-like sacculus around the IM protecting cells from turgor and environmental stress conditions. In several bacteria including E. coli, the OM is tethered to PG by an abundant OM lipoprotein, Lpp (or Braun lipoprotein) that functions to maintain the structural and functional integrity of the cell envelope. Since its discovery Lpp has been studied extensively and although L,D-transpeptidases, the enzymes that catalyse the formation of PG–Lpp linkages have been earlier identified, it is not known how these linkages are modulated. Here, using genetic and biochemical approaches, we show that LdtF (formerly yafK), a newly-identified paralog of L,D-transpeptidases in E. coli is a murein hydrolytic enzyme that catalyses cleavage of Lpp from the PG sacculus. LdtF also exhibits glycine-specific carboxypeptidase activity on muropeptides containing a terminal glycine residue. LdtF is earlier presumed to be an L,D-transpeptidase; however, our results show that it is indeed an L,D-endopeptidase that hydrolyses the products generated by the L,D-transpeptidases. To summarize, this study describes the discovery of a murein endopeptidase with a hitherto unknown catalytic specificity that removes the PG–Lpp cross-links suggesting a role for LdtF in regulation of PG-OM linkages to maintain the structural integrity of the bacterial cell envelope.Significance statementBacterial cell walls contain a unique protective exoskeleton, peptidoglycan, which is a target of several clinically important antimicrobials. In Gram-negative bacteria, peptidoglycan is covered by an additional lipid layer, outer membrane that serves as permeability barrier against entry of toxic molecules. In some bacteria, an extremely abundant lipoprotein, Lpp staples outer membrane to peptidoglycan to maintain the structural integrity of the cell envelope. In this study, we identify a previously unknown peptidoglycan hydrolytic enzyme that cleaves Lpp from the peptidoglycan sacculus and show how the outer membrane-peptidoglycan linkages are modulated in Escherichia coli. Overall, this study helps in understanding the fundamental bacterial cell wall biology and in identification of alternate drug targets for development of new antimicrobials.
Publisher
Cold Spring Harbor Laboratory