Peptidoglycan recycling contributes to outer membrane integrity and carbapenem tolerance in Acinetobacter baumannii

Author:

Islam Nowrosh,Kazi Misha I.,Kang Katie N.,Biboy Jacob,Gray Joe,Ahmed Feroz,Schargel Richard D.,Boutte Cara C.ORCID,Dörr TobiasORCID,Vollmer Waldemar,Boll Joseph M.ORCID

Abstract

AbstractThe Gram-negative cell envelope is an essential structure that not only protects the cell against lysis from the internal turgor, but also forms a barrier to limit entry of antibiotics. Some of our most potent bactericidal antibiotics, the β-lactams, exploit the essentiality of the cell envelope by inhibiting its biosynthesis, typically inducing lysis and rapid death. However, many Gram-negative bacteria exhibit “antibiotic tolerance”, the ability to sustain viability in the presence of β-lactams for extended time periods. Despite several studies showing that antibiotic tolerance contributes directly to treatment failure, and is a steppingstone in acquisition of true resistance, the molecular factors that promote intrinsic tolerance are not well-understood. Acinetobacter baumannii is a critical-threat nosocomial pathogen notorious for its ability to rapidly develop multidrug resistance. While typically reserved to combat multidrug resistant infections, carbapenem β-lactam antibiotics (i.e., meropenem) are first-line prescriptions to treat A. baumannii infections. Meropenem tolerance in Gram-negative pathogens is characterized by morphologically distinct populations of spheroplasts, but the impact of spheroplast formation is not fully understood. Here, we show that susceptible A. baumannii clinical isolates demonstrate high intrinsic tolerance to meropenem, form spheroplasts with the antibiotic and revert to normal growth after antibiotic removal. Using transcriptomics and genetics screens, we characterized novel tolerance factors and found that outer membrane integrity maintenance, drug efflux and peptidoglycan homeostasis collectively contribute to meropenem tolerance in A. baumannii. Furthermore, outer membrane integrity and peptidoglycan recycling are tightly linked in their contribution to meropenem tolerance in A. baumannii.ImportanceCarbapenem treatment failure associated with “superbug” infections has rapidly increased in prevalence, highlighting an urgent need to develop new therapeutic strategies. Antibiotic tolerance can directly lead to treatment failure but has also been shown to promote acquisition of true resistance within a population. While some studies have addressed mechanisms that promote tolerance, factors that underlie Gram-negative bacterial survival during carbapenem treatment are not well-understood. Here, we characterized a role for peptidoglycan recycling in outer membrane integrity maintenance and carbapenem tolerance in A. baumannii. These studies suggest that the pathogen limits antibiotic concentrations in the periplasm and highlights physiological processes that could be targeted to improve antimicrobial treatment.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3