Intrinsic bias at non-canonical, β-arrestin-coupled seven transmembrane receptors

Author:

Pandey Shubhi,Kumari Punita,Baidya Mithu,Kise Ryoji,Cao Yubo,Dwivedi-Agnihotri Hemlata,Banerjee Ramanuj,Li Xaria X.,Cui Cedric S.,Lee John D.,Kawakami Kouki,Chaturvedi Madhu,Ranjan Ashutosh,Laporte Stéphane A.,Woodruff Trent M.ORCID,Inoue Asuka,Shukla Arun K.ORCID

Abstract

AbstractG protein-coupled receptors (GPCRs) are typically characterized by their seven transmembrane (7TM) architecture, and interaction with two universal signal-transducers namely, the heterotrimeric G-proteins and β-arrestins (βarrs). Synthetic ligands and receptor mutants have been designed to elicit transducer-coupling preferences and distinct downstream signaling outcomes for many GPCRs. This raises the question if some naturally-occurring 7TMRs may selectively engage one of these two signal-transducers, even in response to their endogenous agonists. Although there are scattered hints in the literature that some 7TMRs lack G-protein coupling but interact with βarrs, an in-depth understanding of their transducer-coupling preference, GRK-engagement, downstream signaling and structural mechanism remains elusive. Here, we use an array of cellular, biochemical and structural approaches to comprehensively characterize two non-canonical 7TMRs namely, the human decoy D6 receptor (D6R) and the human complement C5a receptor (C5aR2), in parallel with their canonical GPCR counterparts, CCR2 and C5aR1, respectively. We discover that D6R and C5aR2 couple exclusively to βarrs, exhibit distinct GRK-preference, and activate non-canonical downstream signaling partners. We also observe that βarrs, in complex with these receptors, adopt distinct conformations compared to their canonical GPCR counterparts despite being activated by a common natural agonist. Our study therefore establishes D6R and C5aR2 as bona-fide arrestin-coupled receptors (ACRs), and provides important insights into their regulation by GRKs and downstream signaling with direct implications for biased agonism.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3