A selective sweep in the Spike gene has driven SARS-CoV-2 human adaptation

Author:

Kang Lin,He Guijuan,Sharp Amanda K.,Wang Xiaofeng,Brown Anne M.,Michalak Pawel,Weger-Lucarelli JamesORCID

Abstract

SummaryWhile SARS-CoV-2 likely has animal origins1, the viral genetic changes necessary to adapt this animal-derived ancestral virus to humans are largely unknown, mostly due to low levels of sequence polymorphism and the notorious difficulties in experimental manipulations of coronavirus genomes. We scanned more than 182,000 SARS-CoV-2 genomes for selective sweep signatures and found that a distinct footprint of positive selection is located around a non-synonymous change (A1114G; T372A) within the Receptor-Binding Domain of the Spike protein, which likely played a critical role in overcoming species barriers and accomplishing interspecies transmission from animals to humans. Structural analysis indicated that the substitution of threonine with an alanine in SARS-CoV-2 concomitantly removes a predicted glycosylation site at N370, resulting in more favorable binding predictions to human ACE2, the cellular receptor. Using a novel bacteria-free cloning system for manipulating RNA virus genomes, we experimentally validated that this SARS-CoV-2-unique substitution significantly increases replication in human cells relative to its putative ancestral variant. Notably, this mutation’s impact on virus replication in human cells was much greater than that of the Spike D614G mutant, which has been widely reported to have been selected for during human-to-human transmission2,3.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3