The mutation profile of SARS-CoV-2 is primarily shaped by the host antiviral defense

Author:

Azgari CemORCID,Kilinc Zeynep,Turhan Berk,Circi Defne,Adebali OgunORCID

Abstract

AbstractUnderstanding SARS-CoV-2 evolution is a fundamental effort in coping with the COVID-19 pandemic. The virus genomes have been broadly evolving due to the high number of infected hosts world-wide. Mutagenesis and selection are the two inter-dependent mechanisms of virus diversification. However, which mechanisms contribute to the mutation profiles of SARS-CoV-2 remain under-explored. Here, we delineate the contribution of mutagenesis and selection to the genome diversity of SARS-CoV-2 isolates. We generated a comprehensive phylogenetic tree with representative genomes. Instead of counting mutations relative to the reference genome, we identified each mutation event at the nodes of the phylogenetic tree. With this approach, we obtained the mutation events that are independent of each other and generated the mutation profile of SARS-CoV-2 genomes. The results suggest that the heterogeneous mutation patterns are mainly reflections of host (i) antiviral mechanisms that are achieved through APOBEC, ADAR, and ZAP proteins and (ii) probable adaptation against reactive oxygen species.ImportanceSARS-CoV-2 genomes are evolving worldwide. Revealing the evolutionary characteristics of SARS-CoV-2 is essential to understand host-virus interactions. Here, we aim to understand whether mutagenesis or selection is the primary driver of SARS-CoV-2 evolution. This study provides an unbiased computational method for profiling and analyzing independently occurring SARS-CoV-2 mutations. The results point out three host antiviral mechanisms shaping the mutational profile of SARS-CoV-2 through APOBEC, ADAR, and ZAP proteins. Besides, reactive oxygen species might have an impact on the SARS-CoV-2 mutagenesis.

Publisher

Cold Spring Harbor Laboratory

Reference41 articles.

1. Phylogenetic analysis of SARS-CoV-2 genomes in Turkey

2. On the biased nucleotide composition of the human coronavirus RNA genome

3. Positive selection within the genomes of SARS-CoV-2 and other Coronaviruses independent of impact on protein function;PeerJ,2020

4. CpG-creating mutations are costly in many human viruses

5. Chand, M. , Hopkins, S. , Dabrera, G. , Achison, C. , Barclay, W. , Ferguson, N. , … Barrett, J. (2020). Investigation of novel SARS-COV-2 variant: Variant of Concern 202012/01. Retrieved from London: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/947048/Technical_Briefing_VOC_SH_NJL2_SH2.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3