Abstract
AbstractUnderstanding SARS-CoV-2 evolution is a fundamental effort in coping with the COVID-19 pandemic. The virus genomes have been broadly evolving due to the high number of infected hosts world-wide. Mutagenesis and selection are the two inter-dependent mechanisms of virus diversification. However, which mechanisms contribute to the mutation profiles of SARS-CoV-2 remain under-explored. Here, we delineate the contribution of mutagenesis and selection to the genome diversity of SARS-CoV-2 isolates. We generated a comprehensive phylogenetic tree with representative genomes. Instead of counting mutations relative to the reference genome, we identified each mutation event at the nodes of the phylogenetic tree. With this approach, we obtained the mutation events that are independent of each other and generated the mutation profile of SARS-CoV-2 genomes. The results suggest that the heterogeneous mutation patterns are mainly reflections of host (i) antiviral mechanisms that are achieved through APOBEC, ADAR, and ZAP proteins and (ii) probable adaptation against reactive oxygen species.ImportanceSARS-CoV-2 genomes are evolving worldwide. Revealing the evolutionary characteristics of SARS-CoV-2 is essential to understand host-virus interactions. Here, we aim to understand whether mutagenesis or selection is the primary driver of SARS-CoV-2 evolution. This study provides an unbiased computational method for profiling and analyzing independently occurring SARS-CoV-2 mutations. The results point out three host antiviral mechanisms shaping the mutational profile of SARS-CoV-2 through APOBEC, ADAR, and ZAP proteins. Besides, reactive oxygen species might have an impact on the SARS-CoV-2 mutagenesis.
Publisher
Cold Spring Harbor Laboratory
Reference41 articles.
1. Phylogenetic analysis of SARS-CoV-2 genomes in Turkey
2. On the biased nucleotide composition of the human coronavirus RNA genome
3. Positive selection within the genomes of SARS-CoV-2 and other Coronaviruses independent of impact on protein function;PeerJ,2020
4. CpG-creating mutations are costly in many human viruses
5. Chand, M. , Hopkins, S. , Dabrera, G. , Achison, C. , Barclay, W. , Ferguson, N. , … Barrett, J. (2020). Investigation of novel SARS-COV-2 variant: Variant of Concern 202012/01. Retrieved from London: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/947048/Technical_Briefing_VOC_SH_NJL2_SH2.pdf
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献