Fast forward evolution in real time: the rapid spread of SARS-CoV-2 variant of concern lineage B.1.1.7 in Saxony-Anhalt over a period of 5 months

Author:

Glaß Markus1,Misiak Danny1,Misiak Claudia1,Müller Simon1,Rausch Alexander1,Angermann Katharina2,Hoyer Mariann3,Zabel Ramona3,Kehlen Astrid4,Möbius Beate4,Weickert Jessica4,Hüttelmaier Stefan1,Karrasch Matthias4

Affiliation:

1. Institute of Molecular Medicine, Section for Molecular Cell Biology, Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg , Halle (Saale) , Germany

2. A&A Praxis für Laboratoriumsmedizin und Med. Mikrobiologie , Halle (Saale) , Germany

3. amedes MVZ für Laboratoriumsdiagnostik und Mikrobiologie Halle/Leipzig GmbH , Halle (Saale) , Germany

4. Department of Laboratory Medicine , Unit III, Molecular Diagnostic Section, Halle University Hospital , Halle (Saale) , Germany

Abstract

Abstract Objectives Random mutations and recombinations are the main sources for the genetic diversity in SARS-CoV-2, with mutations in the SARS-CoV-2 spike (S) receptor binding motif (RBM) representing a high potential for the emergence of new putative variants under investigation (VUI) or variants of concern (VOC). It is of importance, to measure the different circulating SARS-CoV-2 lineages in order to establish a regional SARS-CoV-2 surveillance program. We established whole genome sequencing (WGS) of circulating SARS-CoV-2 lineages in order to establish a regional SARS-CoV-2 surveillance program. Methods We established a surveillance program for circulating SARS-CoV-2 lineages by performing whole genome sequencing (WGS) in SARS-CoV-2 isolates. Specimens were collected over a period of 5 months from three different sites. Specimens were collected from both patients suffering from COVID-19 and from outpatients without any clinical signs or symptoms; both in a tertiary university hospital, and two private laboratories within an urban area of eastern part Germany. Results Viral WGS from the 364 respiratory specimens with positive SARS-CoV-2 RT-PCR comprised 16 different SARS-CoV-2 lineages. The majority of the obtained sequences (252/364=69%) was assigned to the variant of concern (VOC) Alpha (B.1.1.7). This variant first appeared in February in our samples and quickly became the dominant virus variant. All SNP PCR results could be verified using WGS. Other VOCs found in our cohort were Beta (B.1.351, n=2) and Delta (B.1.617.2, n=1). Conclusions Lineage analysis revealed 16 different virus variants among 364 respiratory samples analyzed by WGS. The number of distinct lineages dramatically decreased over time in leaving only few variants, in particular, the VOC Alpha or B.1.1.7. By closer inspection of point mutations, we found several distinct mutations of the viral spike protein that were reported to increase affinity or enable immune escape. Within a study period of only 5 months, SARS-CoV-2 lineage B.1.1.7 became the dominant lineage in our study population. This study emphasizes the benefit of SARS-CoV-2 testing by WGS. The increasing use of WGS to sequence the entire SARS-CoV-2 genome will reveal additional VUIs and VOCs with the potential to evade the immune system and, thus, will be a promising tool for data mining of relevant information for epidemiological studies. SARS-CoV-2 lineage monitoring using WGS is an important surveillance tool for early detection of upcoming new lineages of concern.

Publisher

Walter de Gruyter GmbH

Subject

Biochemistry (medical),Medical Laboratory Technology,Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3