Using Y-chromosome capture enrichment to resolve haplogroup H2 shows new evidence for a two-Path Neolithic expansion to Western Europe

Author:

Rohrlach Adam B.ORCID,Papac Luka,Childebayeva Ainash,Rivollat Maïté,Villalba-Mouco Vanessa,Neumann Gunnar U.,Penske Sandra,Skourtanioti Eirini,van de Loosdrecht Marieke,Akar Murat,Boyadzhiev Kamen,Boyadzhiev Yavor,Deguilloux Marie-France,Dobeš Miroslav,Erdal Yilmaz S.,Ernée Michal,Frangipane Marcella,Furmanek Miroslaw,Friederich Susanne,Ghesquière Emmanuel,Hałuszko Agata,Hansen Svend,Küßner Mario,Mannino Marcello,Özbal Rana,Reinhold Sabine,Rottier Stéphane,Salazar-García Domingo Carlos,Soler Diaz Jorge,Stockhammer Philipp W.,de Togores Muñoz Consuelo Roca,Aslihan Yener K,Posth Cosimo,Krause Johannes,Herbig AlexanderORCID,Haak Wolfgang

Abstract

AbstractUniparentally-inherited markers on mitochondrial DNA (mtDNA) and the non-recombining regions of the Y chromosome (NRY), have been used for the past 30 years to investigate the history of humans from a maternal and paternal perspective.Researchers have preferred mtDNA due to its abundance in the cells, and comparatively high substitution rate. Conversely, the NRY is less susceptible to back mutations and saturation, and is potentially more informative than mtDNA owing to its longer sequence length. However, due to comparatively poor NRY coverage via shotgun sequencing, and the relatively low and biased representation of Y-chromosome variants on capture arrays such as the 1240K, ancient DNA studies often fail to utilize the unique perspective that the NRY can yield.Here we introduce a new DNA enrichment assay, coined YMCA (Y-mappable capture assay), that targets the “mappable” regions of the NRY. We show that compared to low-coverage shotgun sequencing and 1240K capture, YMCA significantly improves the coverage and number of sites hit on the NRY, increasing the number of Y-haplogroup informative SNPs, and allowing for the identification of previously undiscovered variants.To illustrate the power of YMCA, we show that the analysis of ancient Y-chromosome lineages can help to resolve Y-chromosomal haplogroups. As a case study, we focus on H2, a haplogroup associated with a critical event in European human history: the Neolithic transition. By disentangling the evolutionary history of this haplogroup, we further elucidate the two separate paths by which early farmers expanded from Anatolia and the Near East to western Europe.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3