Abstract
AbstractThe capacity of highly diverse systems to prevail has proven difficult to explain. In addition to methodological issues, the inherent complexity of ecosystems and issues like multicausality, non-linearity and context-specificity make it hard to establish general and unidirectional explanations. Nevertheless, in recent years, high order interactions have been increasingly discussed as a mechanism that benefits the functioning of highly diverse ecosystems and may add to the mechanisms that explain their persistence. Until now, this idea has been explored by means of hypothetical simulated networks. Here, we test this idea using an updated and empirically documented network for a coffee agroecosystem. We identify potentially key nodes and measure network robustness in the face of node removal with and without incorporation of high order interactions. We find that the system’s robustness is either increased or unaffected by the addition of high order interactions, in contrast with randomized counterparts with similar structural characteristics. We also propose a method for representing networks with high order interactions as ordinary graphs and a method for measuring their robustness.HighlightsThe robustness of a coffee-associated ecological network is either increased or unaffected by the incorporation of high order interactions.A method is proposed for representing high order interactions in ordinary networks.A method is proposed to measure the robustness of networks with high order interactions.High order interactions may promote the persistence of diverse ecosystems.
Publisher
Cold Spring Harbor Laboratory