Wavelength-dependent effects of artificial light at night on phytoplankton growth and community structure

Author:

Diamantopoulou Christina,Christoforou Eleni,Dominoni Davide M.,Kaiserli Eirini,Czyzewski Jakub,Mirzai Nosrat,Spatharis SofieORCID

Abstract

AbstractArtificial light at night (ALAN) is increasingly recognised as a disruptive form of environmental pollution, impacting many physiological and behavioural processes that may scale up to population and community-level effects. Mounting evidence from animal studies show that the severity and type of the impact depends on the wavelength and intensity of ALAN. This knowledge has been instrumental for informing policy-making and planning for wildlife-friendly illumination. However, most of this evidence comes from terrestrial habitats, while research testing alternative wavelength illumination in marine environments is lagging behind. In this study we investigated the effect of such alternative ALAN colours on marine primary producers. Specifically, we tested the effect of green, red, and natural white LED illumination at night, compared to a dark control, on the growth of a green microalgae as well as the biomass, diversity and composition of a phytoplankton assemblage. Our findings show that green ALAN boosted chlorophyll production at the exponential growth stage, resulting in higher biomass production in the green algae Tetraselmis suesica. All ALAN wavelengths affected the biomass and diversity of the assemblage with the red and green ALAN having the stronger effects, leading to higher overall abundance and selective dominance of specific diatom species compared to white ALAN and the dark control.SynthesisOur work indicates that the wavelength of artificial light sources in marine areas should be carefully considered in management and conservation plans. In particular, green and red light should be used with caution in coastal areas, where there might be a need to strike a balance between the strong effects of green and red light on marine primary producers with the benefit they bring to other organisms.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3