Predicting Epigenomic Functions of Genetic Variants in the Context of Neurodevelopment via Deep Transfer Learning

Author:

Lai Boqiao,Qian Sheng,Zhang Hanwen,Zhang SiweiORCID,Kozlova Alena,Duan Jubao,He Xin,Xu Jinbo

Abstract

AbstractDecoding the regulatory effects of non-coding variants is a key challenge in understanding the mechanisms of gene regulation as well as the genetics of common diseases. Recently, deep learning models have been introduced to predict genome-wide epigenomic profiles and effects of DNA variants, in various cellular contexts, but they were often trained in cell lines or bulk tissues that may not be related to phenotypes of interest. This is particularly a challenge for neuropsychiatric disorders, since the most relevant cell and tissue types are often missing in the training data of such models.To address this issue, we introduce a deep transfer learning framework termed MetaChrom that takes advantage of both a reference dataset - an extensive compendium of publicly available epigenomic data, and epigenomic profiles of cell types related to specific phenotypes of interest. We trained and evaluated our model on a comprehensive set of epigenomic profiles from fetal and adult brain, and cellular models representing early neurodevelopment. MetaChrom predicts these epigenomic features with much higher accuracy than previous methods, and than models without the use of reference epigenomic data for transfer learning. Using experimentally determined regulatory variants from iPS cell-derived neurons, we show that MetaChrom predicts functional variants more accurately than existing non-coding variant scoring tools. By combining genome-wide association study (GWAS) data with MetaChrom predictions, we prioritized 31 SNPs for Schizophrenia (SCZ). These candidate SNPs suggest potential risk genes of SCZ and the biological contexts where they act.In summary, MetaChrom is a general transfer learning framework that can be applied to the study of regulatory functions of DNA sequences and variants in any disease-related cell or tissue types. The software tool is available at https://github.com/bl-2633/MetaChrom and a prediction web server is accessible at https://metachrom.ttic.edu/.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3