Accurate protein function prediction via graph attention networks with predicted structure information

Author:

Lai Boqiao1ORCID,Xu Jinbo1

Affiliation:

1. Toyota Technological Institute at Chicago, Chicago, IL 60637, USA

Abstract

Abstract Experimental protein function annotation does not scale with the fast-growing sequence databases. Only a tiny fraction (<0.1%) of protein sequences has experimentally determined functional annotations. Computational methods may predict protein function very quickly, but their accuracy is not very satisfactory. Based upon recent breakthroughs in protein structure prediction and protein language models, we develop GAT-GO, a graph attention network (GAT) method that may substantially improve protein function prediction by leveraging predicted structure information and protein sequence embedding. Our experimental results show that GAT-GO greatly outperforms the latest sequence- and structure-based deep learning methods. On the PDB-mmseqs testset where the train and test proteins share <15% sequence identity, our GAT-GO yields Fmax (maximum F-score) 0.508, 0.416, 0.501, and area under the precision-recall curve (AUPRC) 0.427, 0.253, 0.411 for the MFO, BPO, CCO ontology domains, respectively, much better than the homology-based method BLAST (Fmax 0.117, 0.121, 0.207 and AUPRC 0.120, 0.120, 0.163) that does not use any structure information. On the PDB-cdhit testset where the training and test proteins are more similar, although using predicted structure information, our GAT-GO obtains Fmax 0.637, 0.501, 0.542 for the MFO, BPO, CCO ontology domains, respectively, and AUPRC 0.662, 0.384, 0.481, significantly exceeding the just-published method DeepFRI that uses experimental structures, which has Fmax 0.542, 0.425, 0.424 and AUPRC only 0.313, 0.159, 0.193.

Funder

National Institute of Health

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identifying virulence factors using graph transformer autoencoder with ESMFold-predicted structures;Computers in Biology and Medicine;2024-03

2. Seq-InSite: sequence supersedes structure for protein interaction site prediction;Bioinformatics;2024-01-01

3. Protein function prediction using graph neural network with multi-type biological knowledge;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

4. Protein Function Prediction with Primary-Tertiary Hierarchical Learning;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

5. SLPFA: Protein Structure-Label Embedding Attention Network for Protein Function Annotation;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3