Mutation N501Y in RBD of Spike Protein Strengthens the Interaction between COVID-19 and its Receptor ACE2

Author:

Tian Fang,Tong Bei,Sun Liang,Shi Shengchao,Zheng Bin,Wang Zibin,Dong Xianchi,Zheng PengORCID

Abstract

ABSTRACTSARS-CoV-2 is spreading around the world for the past year. Enormous efforts have been taken to understand its mechanism of transmission. It is well established now that the receptor-binding domain (RBD) of the spike protein binds to the human angiotensin-converting enzyme 2 (ACE2) as its first step of entry. Being a single-stranded RNA virus, SARS-CoV-2 is evolving rapidly. Recently, several variants such as B.1.1.7, B.1.351, and P.1, with a key mutation N501Y on the RBD, appear to be more infectious to humans. To understand its mechanism, we combined cell surface binding assay, kinetics study, single-molecule technique, and computational method to investigate the interaction between these RBD (mutations) and ACE2. Remarkably, RBD with the N501Y mutation exhibited a considerably stronger interaction characterized from all these methodologies, while the other two mutations from B.1.351 contributed to a less effect. Fluorescence-activated cell scan (FACS) assays found that RBD N501Y mutations are of higher binding affinity to ACE2 than the wild type. Surface plasmon resonance further indicated that N501Y mutation had a faster association rate and slower dissociation rate. Consistent with the kinetics study, atomic force microscopy-based single-molecule force microscopy quantify their strength on living cells, showing a higher binding probability and unbinding force for the mutation. Finally, Steered Molecular Dynamics (SMD) simulations on the dissociation of RBD-ACE2 complexes revealed that the N501Y introduced additional π-π and π-cation interaction for the higher force/interaction. Taken together, we suggested that the reinforced interaction from N501Y mutation in RBD should play an essential role in the higher transmission of COVID-19 variants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3