Effect of Geometric Sharpness on Translucent Material Perception

Author:

Xiao Bei,Zhao Shuang,Gkioulekas Ioannis,Bi Wenyan,Bala Kavita

Abstract

When judging optical properties of a translucent object, humans often look at sharp geometric features such as edges and thin parts. Analysis of the physics of light transport shows that these sharp geometries are necessary for scientific imaging systems to be able to accurately measure the underlying material optical properties. In this paper, we examine whether human perception of translucency is likewise affected by the presence of sharp geometry, by confounding our perceptual inferences about an object’s optical properties. We employ physically accurate simulations to create visual stimuli of translucent materials with varying shapes and optical properties under different illuminations. We then use these stimuli in psychophysical experiments, where human observers are asked to match an image of a target object by adjusting the material parameters of a match object with different geometric sharpness, lighting geometry, and 3D geometry. We find that the level of geometric sharpness significantly affects perceived translucency by the observers. These findings generalize across a few illuminations and object shapes. Our results suggest that the perceived translucency of an object depends on both the underlying material optical parameters and 3D shape. We also conduct analyses using computational metrics including (luminance-normalized) L2, structural similarity index (SSIM), and Michelson contrast. We find that these image metrics cannot predict perceptual results, suggesting low level image cues are not sufficient to explain our results.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Role of Subsurface Scattering in Glossiness Perception;ACM Transactions on Applied Perception;2021-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3