The Role of Subsurface Scattering in Glossiness Perception

Author:

Gigilashvili Davit1ORCID,Shi Weiqi2,Wang Zeyu2,Pedersen Marius3,Hardeberg Jon Yngve1,Rushmeier Holly2

Affiliation:

1. Norwegian University of Science and Technology, Gjøvik, Norway

2. Yale University, New Haven, CT, USA

3. Norwegian University of Science and Technology, Norway

Abstract

This study investigates the potential impact of subsurface light transport on gloss perception for the purposes of broadening our understanding of visual appearance in computer graphics applications. Gloss is an important attribute for characterizing material appearance. We hypothesize that subsurface scattering of light impacts the glossiness perception. However, gloss has been traditionally studied as a surface-related quality and the findings in the state-of-the-art are usually based on fully opaque materials, although the visual cues of glossiness can be impacted by light transmission as well. To address this gap and to test our hypothesis, we conducted psychophysical experiments and found that subjects are able to tell the difference in terms of gloss between stimuli that differ in subsurface light transport but have identical surface qualities and object shape. This gives us a clear indication that subsurface light transport contributes to a glossy appearance. Furthermore, we conducted additional experiments and found that the contribution of subsurface scattering to gloss varies across different shapes and levels of surface roughness. We argue that future research on gloss should include transparent and translucent media and to extend the perceptual models currently limited to surface scattering to more general ones inclusive of subsurface light transport.

Funder

Norges forskningsråd

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Experimental and Cognitive Psychology,General Computer Science,Theoretical Computer Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Navigating the Manifold of Translucent Appearance;Computer Graphics Forum;2024-04-27

2. Visually Significant Dimensions and Parameters for Gloss;Journal of Imaging;2023-12-29

3. The effect of display capabilities on the gloss consistency between real and virtual objects;SIGGRAPH Asia 2023 Conference Papers;2023-12-10

4. Appearance Beyond Colour;Fundamentals and Applications of Colour Engineering;2023-10-11

5. Unsupervised learning reveals interpretable latent representations for translucency perception;PLOS Computational Biology;2023-02-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3