Navigating the Manifold of Translucent Appearance

Author:

Lanza Dario1ORCID,Masia Belen1ORCID,Jarabo Adrian1ORCID

Affiliation:

1. Universidad de Zaragoza ‐ I3A Spain

Abstract

AbstractWe present a perceptually‐motivated manifold for translucent appearance, designed for intuitive editing of translucent materials by navigating through the manifold. Classic tools for editing translucent appearance, based on the use of sliders to tune a number of parameters, are challenging for non‐expert users: These parameters have a highly non‐linear effect on appearance, and exhibit complex interplay and similarity relations between them. Instead, we pose editing as a navigation task in a low‐dimensional space of appearances, which abstracts the user from the underlying optical parameters. To achieve this, we build a low‐dimensional continuous manifold of translucent appearance that correlates with how humans perceive this type of materials. We first analyze the correlation of different distance metrics in image space with human perception. We select the best‐performing metric to build a low‐dimensional manifold, which can be used to navigate the space of translucent appearance. To evaluate the validity of our proposed manifold within its intended application scenario, we build an editing interface that leverages the manifold, and relies on image navigation plus a fine‐tuning step to edit appearance. We compare our intuitive interface to a traditional, slider‐based one in a user study, demonstrating its effectiveness and superior performance when editing translucent objects.

Funder

University of the East

Publisher

Wiley

Reference66 articles.

1. Adobe.Photoshop.https://www.adobe.com/products/photoshop.html. 2023 3.

2. Autodesk.Maya.https://www.autodesk.com/. 2023 3.

3. Blender Foundation.Blender.https://www.blender.org/. 2023 8.

4. Bitterli Benedikt Ravichandran Srinath Müller Thomas et al. “A radiative transfer framework for non‐exponential media”.ACM Trans. Graph. (2018) 11.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3