An aging-independent replicative lifespan in a symmetrically dividing eukaryote

Author:

Spivey Eric C.,Jones Stephen K.,Rybarski James R.,Saifuddin Fatema A.,Finkelstein Ilya J.ORCID

Abstract

AbstractThe replicative lifespan (RLS) of a cell—defined as the number of generations a cell divides before death—has informed our understanding of the molecular mechanisms of cellular aging. Nearly all RLS studies have been performed on budding yeast and little is known about the mechanisms of aging and longevity in symmetrically dividing eukaryotic cells. Here, we describe a multiplexed fission yeast (Schizosaccharomyces pombe) lifespan micro-dissector (FYLM); a microfluidic platform for performing automated micro-dissection and high-content single-cell analysis in well-defined culture conditions. Using the FYLM, we directly observe continuous and robust replication of hundreds of individual fission yeast cells for over seventy-five cell divisions. Surprisingly, cells die without any classic hallmarks of cellular aging such as changes in cell morphology, increased doubling time, or reduced sibling health. Genetic perturbations and longevity-enhancing drugs can further extend the replicative lifespan (RLS) via an aging-independent mechanism. We conclude that despite occasional sudden death of individual cells, fission yeast does not age. These results highlight that cellular aging and replicative lifespan can be uncoupled in a eukaryotic cell.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3