Ndc80/Nuf2-like protein KKIP1 connects a stable kinetoplastid outer kinetochore complex to the inner kinetochore and responds to metaphase tension

Author:

Brusini LorenzoORCID,D’Archivio SimonORCID,McDonald JenniferORCID,Wickstead BillORCID

Abstract

AbstractKinetochores perform an essential role in eukaryotes, coupling chromosomes to the mitotic spindle. In model organisms they are composed of a centromere-proximal inner kinetochore and an outer kinetochore network that binds to microtubules. In spite of its universal function, the composition of kinetochores in extant eukaryotes can differ greatly, and understanding how these different systems evolved and now function are important questions in cell biology. In trypanosomes and other Kinetoplastida, the kinetochores are extremely divergent, with most components showing no detectable similarity to proteins in other systems. They may also be very different functionally, potentially binding to the spindle directly via the inner kinetochore protein KKT4. However, we do not know the extent of the trypanosome kinetochore and proteins interacting with a highly divergent Ndc80/Nuf2-like protein, KKIP1, suggest the existence of more centromere-distal complexes. Here we use quantitative proteomics from multiple start-points to define a stable 9-protein kinetoplastid outer kinetochore (KOK) complex. Two of these core components were recruited from other nuclear processes, exemplifying the role of moonlighting proteins in kinetochore evolution. The complex is physically and biochemically distinct from KKT proteins, but KKIP1 links the inner and outer sets, with its C-terminus very close to the centromere and N-terminus at the outer kinetochore. Moreover, trypanosome kinetochores exhibit intra-kinetochore movement during metaphase, primarily by elongation of KKIP1, consistent with pulling at the outer kinetochores. Together, these data suggest that the KOK complex, KKIP5 and N-terminus of KKIP1 likely constitute the extent of the trypanosome outer kinetochore and that this assembly binds to the spindle with sufficient strength to stretch the kinetochore.

Publisher

Cold Spring Harbor Laboratory

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3