Effect of inbreeding on type 2 diabetes-related metabolites in a Dutch genetic isolate

Author:

Demirkan Ayşe,Liu Jun,Amin Najaf,van Dijk Ko Willems,van Duijn Cornelia M.

Abstract

AbstractAutozygosity, meaning inheritance of an ancestral allele in the homozygous state is known to lead bi-allelic mutations that manifest their effects through the autosomal recessive inheritance pattern. Autosomal recessive mutations are known to be the underlying cause of several Mendelian metabolic diseases, especially among the offspring of related individuals. In line with this, inbreeding coefficient of an individual as a measure of cryptic autozygosity among the general population is known to lead adverse metabolic outcomes including type 2 diabetes (T2DM), a multifactorial metabolic disease for which the recessive genetic causes remain unknown. In order to unravel such effects for multiple metabolic facades of the disease, we investigated the relationship between the excess of homozygosity and the metabolic signature of T2DM. We included a set of heritable 143 circulating markers associated with fasting glucose in a Dutch genetic isolate Erasmus Rucphen Family (ERF) of up to 2,580 individuals. We calculated individual whole genome-based, exome-based and pedigree-based inbreeding coefficients and tested their influence on the T2DM-related metabolites as well as T2DM risk factors. We also performed model supervised genome-wide association analysis (GWAS) for the metabolites which significantly correlate with inbreeding values. Inbreeding value of the population significantly and positively correlated with associated with risk factors of T2DM: body-mass index (BMI), glucose, insulin resistance, fasting insulin and waist-hip ratio. We found that inbreeding influenced 32.9% of the T2DM-related metabolites, clustering among chemical groups of lipoproteins, amino-acids and phosphatidylcholines, whereas 80 % of these significant associations were independent of the BMI. The most remarkable effect of inbreeding is observed for S-HDL-ApoA1, for which we show evidence of the novel DISP1 genetic region discovered by model supervised GWAS, in the ERF population. In conclusion, we show that inbreeding effects human metabolism and genetic models other than the globally used additive model is worth considering for study of metabolic phenotypes.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3