Recessive genetic effects on type 2 diabetes-related metabolites in a consanguineous population

Author:

Demirkan Ayşe,Liu Jun,Amin Najaf,van Klinken Jan B,van Dijk Ko Willems,van Duijn Cornelia M.

Abstract

AbstractAutozygosity, meaning inheritance of an ancestral allele in the homozygous state is known to lead bi-allelic mutations that manifest their effects through the autosomal recessive inheritance pattern. Autosomal recessive mutations are known to be the underlying cause of several Mendelian metabolic diseases, especially among the offspring of related individuals. In line with this, inbreeding coefficient of an individual as a measure of cryptic autozygosity among the general population is known to lead adverse metabolic outcomes including Type 2 diabetes (T2DM); a multifactorial metabolic disease for which the recessive genetic causes remain unknown. In order to unravel such effects for multiple metabolic facades of the disease, we investigated the relationship between the excess of homozygosity and the metabolic signature of T2DM. We included a set of 53 metabolic phenotypes, including 47 metabolites, T2DM and five T2DM risk factors, measured in a Dutch genetic isolate of 2,580 people. For 20 of these markers, we identified 29 regions of homozygous (ROHs) associated with the nominal significance of P-value < 1.0 × 10−3. By performing association according to the recessive genetic model within these selected regions, we identified and replicated two intronic variants: rs6759814 located in KCNH7 associated with valine and rs1573707 located in PTPRT associated with IDL-free cholesterol and IDL-phospholipids. Additionally, we identified a rare intronic SNV in TBR1 for which the homozygous individuals were enriched for obesity. Interestingly, all three genes are mainly neuronally expressed and pointed out the involvement of glutamergic synaptic transmission pathways in the regulation of metabolic pathways. Taken together our study underline the additional benefits of model supervised analysis, but also seconds the involvement of the central nervous system in T2DM and obesity pathogenesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3